
E�ect of Compliant Walls on Secondary Instabilities in

Boundary-Layer Transition

Ronald D. Josliny
NASA Langley Research Center, Hampton, Virginia 23681

and

Philip J. Morrisz
Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

For aerodynamic and hydrodynamic vehicles, it is highly desirable to reduce drag and noise levels. A reduction
in drag leads to fuel savings. In particular for submersible vehicles, a decrease in noise levels inhibits detection.
A suggested means to obtain these reduction goals is by delaying the transition from laminar to turbulent 
ow
in external boundary layers. For hydrodynamic applications, a passive device which shows promise for transition
delays is the compliant coating. In previous studies with a simple mechanical model representing the compliant wall,
coatings were found that provided transition delays as predicted from the semi-empirical en method. Those studies
were concerned with the linear stage of transition where the instability of concern is referred to as the primary
instability. For the 
at-plate boundary layer, the Tollmien-Schlichting (TS) wave is the primary instability. In one
of those studies, it was shown that three-dimensional (3-D) primary instabilities, or oblique waves, could dominate
transition over the coatings considered. From the primary instability, the stretching and tilting of vorticity in the
shear 
ow leads to a secondary instability mechanism. This has been theoretical described by Herbert based on
Floquet theory. In the present study, Herbert's theory is used to predict the development of secondary instabilities
over isotropic and non-isotropic compliant walls. Since oblique waves may be dominant over compliant walls, a
secondary theory extention is made to allow for these 3-D primary instabilities. The e�ect of variations in primary
amplitude, spanwise wavenumber, and Reynolds number on the secondary instabilities are examined. As in the
rigid wall case, over compliant walls the subharmonic mode of secondary instability dominates for low-amplitude
primary disturbances. Both isotropic and non-isotropic compliant walls lead to reduced secondary growth rates
compared to the rigid wall results. For high frequencies, the non-isotropic wall suppresses the ampli�cation of the
secondary instabilities, while instabilities over the isotropic wall may grow with an explosive rate similar to the rigid
wall results. For the more important lower frequencies, both isotropic and non-isotropic compliant walls suppress
the ampli�cation of secondary instabilities compared to the rigid wall results. The twofold major discovery and
demonstration of the present investigation are: (1) the use of passive devices, such as compliant walls, can lead to
signi�cant reductions in the secondary instability growth rates and ampli�cation; (2) suppressing the primary growth
rates and subsequent ampli�cation enable delays in the growth of the explosive secondary instability mechanism.

1. Introduction

Research involving 
ow over flexible walls was
started in the late-1950's by Kramer1;2. Experimentally,
Kramer found signi�cant drag reductions using rubber
coatings over rigid walls. Investigators in the 1960's fo-
cused on the task of experimentally duplicating and the-
oretically explaining Kramer's results. The majority of
these studies failed to produce any comparable results;
yet, the theoretical results laid the foundation for all fu-
ture studies involving 
exible walls. Interest turned to-
ward the use of compliant walls for turbulent drag reduc-
tion. In the 1970's NASA3 and in the 1980's the Of�ce of
Naval Research4 sponsored investigations involving the
use of compliant walls for the turbulent problem. Al-
thought most of the results from this era were either in-
conclusive or unsatisfactory, the contributions, together
with earlier results, have acted as stepping stones to the
understanding of the physically

complex 
uid/wall interaction phenomena. A compre-
hensive review of the pioneering studies was given by
Bushnell, Hefner and Ash5, in particular for the tur-
bulent 
ow problem. More recent reviews were given
by Riley, Gad-el-Hak and Metcalfe6, Gad-el-Hak7;8, and
Carpenter9.

Motivation for the present investigation is partially
derived from the following favorable theoretical and ex-
perimental results. In the early 1980's, Carpenter and
Garrad10;11 showed theoretically that Kramer-type sur-
faces could lead to potential delays in transition. Fur-
ther, they indicated de�ciencies in previous investiga-
tions which may have prevented their achieving results
comparable to Kramer's. Only recently, experiments
performed by Willis12 and Gaster13 showed favorable re-
sults using compliant walls. As outlined in the above
mentioned reviews, a number of investigations in the
past ten years have been conducted involving flexible
walls. A main emphasis of these studies was to under-
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stand the physical mechanisms involved in the fluid/wall
interaction of transitional and turbulent 
ows. Most of
these studies focused on the 2-D instability problem, ex-
cept Yeo14 who showed that a lower critical Reynolds
number existed for the isotropic compliant wall for 3-D
instability waves. Carpenter and Morris15 and Joslin,
Morris and Carpenter16 have shown that 3-D Tollmien-
Schlichting waves can have greater growth rates over
compliant walls than 2-D waves. However, they showed
that, even though 3-D waves may be dominant, transi-
tion delays are still obtainable through the use of com-
pliant walls. They considered a compliant wall model
used by Grosskreutz17 for his turbulent boundary-layer
experiments.

In this paper, the growth rates and ampli�cation
of secondary instabilities over compliant walls are pre-
dicted and compared to the rigid wall results. A the-
ory for secondary instabilities is used which is based on
Floqu�et Theory and was developed by Herbert18. This
theory agrees remarkably well with experiments, in par-
ticular those of Klebanoff, Tidstrom and Sargent19 for
peak-valley splitting (fundamental) and Kachanov and
Levchenko20 for peak-valley alignment (subharmonic).
The secondary instability theory is extended to allow for
3-D primary instabilities, which are dominant over the
compliant walls considered. Appropriate boundary con-
ditions for the Grosskreutz17 wall model are derived for
the secondary analysis.

In the next section, the primary instability problem
is outlined. In section three, the secondary instability
problem is discussed. The numerical methods, results,
and a summary follow in the remaining sections.

2. Primary Wave Model

Results for 2-D and 3-D primary instabilities over
compliant and rigid walls have been presented by
Joslin21, Morris and Carpenter15;16. Since the secondary
instability theory is based on and includes a primary in-
stability analysis, brief derivations of the dynamic equa-
tions and boundary conditions for the 3-D primary insta-
bility problem are included below. The disturbances are
represented as travelling waves which may grow or decay
as they propagate. Nonlinear coupling is ignored so that
individual components of the frequency spectrum may
be studied. Additionally, the quasi-parallel assumption
is made.

Consider an incompressible laminar, boundary-layer

ow over a smooth 
at wall. The Navier-Stokes equa-
tions govern the 
ow. The Blasius pro�le is used to
represent the mean 
ow.

A small-amplitude disturbance is introduced into
the laminar 
ow. A normal mode representation is given
as

fv01;

0

1
g(x; y; z; t) =fv1;
1g(y) exp[i(x� cos �

+z� sin�� !t)] + c:c: (1)

where v1 and 
1 are the complex eigenfunctions of nor-
mal velocity and vorticity, respectively. To obtain a real
solution, complex conjugate solutions denoted by c:c: are
required. � is the wavenumber, ! is the frequency, and �

is the wave angle. In general, � and ! are complex lead-
ing to an ambiguity in the system. For temporal analy-
ses, � is a real speci�ed wavenumber and ! is the com-
plex eigenvalue. For spatial analyses, ! is a real speci�ed
frequency and � is the complex eigenvalue. For the com-
pliant wall problem, Joslin, Morris and Carpenter16 have
shown that the use of eqn. (1) leads to an overestimation
of the growth of the wave as it propagates. The wave ac-
tually propagates in a nearly streamwise direction which
is in the direction of the group velocity, not normal to the
wave fronts. In the present paper, the secondary insta-
bilities are investigated using this simple representation
of the primary instabilities. Since the present approach
is conservative, it should exemplify the bene�ts of using
compliant walls as a means to obtain transition delays.
Also, a major emphasis and motivation of the present
study is to determine the behavior, or response, of the
phenomena{namely secondary instabilities{to compliant
walls.

If the normal mode relation (1) is substituted into
the linearized form of the Navier-Stokes equations, the
following nondimensional system results:

v0000
1 + a1(y)v

00

1 + a2(y)v1 = 0 (2)

where

a1(y) = � iR�(Uo(y)� cos �� !) � 2�2

a2(y) = iR��
2(Uo(y)� cos �� !)

+iR�� cos �Uo
00(y) + �4

and

001 + a3(y)
1 + a4(y)v1 = 0 (3)

where

a3(y) =� �2 � iR�(Uo(y)� cos�� !)

a4(y) =� iR�� sin�U
0

o(y):

The equations are nondimensionalized using the
freestream velocity U1, kinematic viscosity �, and
an appropriate length scale. Convenient lengths for
the boundary-layer scale with the x-Reynolds number,
Rx = U1x=�. These include a thickness, �, where

the Reynolds number is de�ned R� = R
1=2
x and a

boundary-layer displacement thickness, ��, where R�� =
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17207R1=2
x . Eqns. (2) and (3) are referred to as the Orr-

Sommerfeld and Squire equations, respectively. The sys-
tem requires six boundary conditions. Requiring that
the disturbance 
uctuations vanish at in�nity supplies
three:

v1(y) ; v1
0(y) ; 
1(y) ! 0 as y !1 (4)

The remaining boundary conditions are determined from
the compliant wall model.

The compliant wall model used for the present pa-
per was introduced by Grosskreutz17 in his experimental
drag reduction studies with turbulent boundary layers.
He suggested that the link between streamwise and nor-
mal surface displacements would cause a negative pro-
duction of turbulence near the wall. Although his results
for the turbulent 
ow were disappointing, the surface
does react to the 
uid 
uctuations in transitional 
ow in
such a way as to reduce production of instability growth.
Carpenter and Morris22 have shown by an energy analy-
sis how the many competing energy-transfer mechanisms
are in
uenced by the compliant wall presence. Of note
is the reduced energy production by the Reynolds stress
which may cause the reduced growth rates. Further,
Joslin, Morris and Carpenter16 predicted that transition
delays of 4-10 times the rigid wall transition Reynolds
number were achievable with this coating. So the model
has been extended to allow for a secondary instability
analysis.

The mechanical model consists of a thin, elastic
plate supported by hinged and sprung rigid members in-
clined to the horizontal and facing upstream at an angle,
�, when in equilibrium. A sketch of the mechanical wall
model is shown in Fig. 1. The boundary conditions are
obtained by enforcing a balance of forces in the stream-
wise and spanwise directions and the continuity of 
uid
and wall motion. These are given below in linearized
form.

Fig. 1 Mechanical model representing the

Grosskreutz compliant coating.

For small displacements of an element out of equi-
librium, the mechanical surface can be thought to move
in a direction perpendicular to the rigid swivel-arm. The
horizontal and vertical displacements (�1; �1) are linked
to the angular displacement (��) by

�1 = `�� sin � and �1 = `�� cos � (5)

where ` is the length of the rigid-armmember. Equations
of motion for the element in the streamwise and spanwise
directions may be obtained by a balance of the forces of
the 
uid 
uctuations acting on the surface and the forces
due to the wall motion. These equations are

�mb
@2�1

@t2
+(Bx

@4�1

@x4
+ 2Bxz

@4�1

@x2@z2

+Bz

@4�1

@z4
) cos2 � +KE �1 �Exb

@2�1

@x2
sin � cos �

=(�p+ �yy) cos
2 � + �yx sin � cos � (6)

and

�mb
@2�1

@t2
+KS�1 �Ezb

@2�1

@z2
= �yz (7)

where

fBx; Bzg =
fEx; Ezgb

3

12(1� �x�z)
and Bxz =

p
BxBz:

�1 is the spanwise surface displacement. �m and b are the
plate density and thickness; (Bx; Bxz; Bz) are the 
exu-
ral rigidities of the plate in the streamwise, transverse,
and spanwise directions; (Ex; Ez) are the moduli of elas-
ticity of the plate; KE ;KS are the e�ective streamwise
and spanwise spring sti�ness; p is the pressure 
uctua-
tion which is obtained from the 
uid momentum equa-
tions; and �yx, �yy and �yz are the streamwise, normal,
and spanwise viscous shear stress 
uctuations in the 
uid
acting on the wall.

The terms on the left hand side of eqn. (6) refer
to mechanical forces and the terms on the right refer to

uid motion forces due to viscous stress and pressure

uctuations. For the case where the ribs are aligned
at � = 0o, the wall becomes isotropic and reduces to the
theoretical model studied by Carpenter and Garrad10;11.
Otherwise the wall is referred to as non-isotropic and the
rib angle is determined by �.

The continuity of 
uid/wall motion is given in the
streamwise, normal, and spanwise directions, respec-
tively as

@�1

@t
= u1 + �1U

0

o (8)

@�1

@t
= v1 (9)

@�1

@t
= w1 (10)
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where (u1; v1; w1) are the disturbance velocity compo-
nents in the streamwise, normal and spanwise directions.
For the Grosskreutz coating,KS !1 is assumed, which
from eqn. (7) would result in zero e�ective spanwise
surface displacement. This implies from eqn. (10) that
w1(0) = 0. Strictly speaking, if the assumptionKS !1
is relaxed, the resulting instabilities have larger growth
rates. This suggests that spanwise sti�eners are stabiliz-
ing to a disturbed 
ow. So with the assumption enforced,
a better coating for potential transition delays results.
The surface displacement takes the same normal mode
form as the primary wave given by eqn. (1). The normal
modes are substituted into eqns. (6-10). The equations
can be reduced to three equations in terms of the normal
velocity and vorticity16;21.

3. Secondary Instability Theory

In this section, a secondary instability theory devel-
oped by Herbert18 is extended to allow for 3-D primary
instabilities. Additionally, boundary equations describ-
ing the compliant walls are introduced for secondary in-
stabilities. The 
ow is governed by the Navier-Stokes
equations. Instantaneous velocity and pressure compo-
nents are introduced and given as

v(~x; y; ~z; t) = v2(~x; y; ~z; t) +Bv3(~x; y; ~z; t)

p(~x; y; ~z; t) = p2(~x; y; ~z; t) +Bp3(~x; y; ~z; t) (11)

where p3 and v3 = (u3; v3; w3) are the secondary dis-
turbance pressure and velocity in the �xed laboratory
reference frame (~x; y; ~z); and p2 and v2 = (u2; v2; w2)
are the basic pressure and velocity given by,

v2(~x; y; ~z; t) = fUo(y); 0; 0g+Afu1; v1; w1g(~x; y; ~z; t)

p2(~x; y; ~z; t) = Ap1(~x; y; ~z; t) (12)

The basic 
ow is given by the Blasius pro�le and eigen-
functions of the primary wave. Assume locally that the
primary wave is periodic in t and periodic in (~x; ~z) with
wavelength �r = 2�=�r and e�ne a disturbance phase
velocity which is

cr = (cx = !r=�r cos �; 0; cz = !r=�r sin�):

Then in a frame moving with the primary wave,

v1(~x; y; ~z) = v1(x; y; z) = v1(x+ �x; y; z + �z) (13)

where (x; z) is the reference frame movingwith the wave.
With an appropriate normalization of primary eigen-
functions (u1; v1; w1) the amplitude, A, directly mea-
sures the maximum streamwise rms 
uctuation. This
is given by

max
0<y<1

ju1(y)j
2 = ju1(ym)j

2 = 1=2 (14)

The instantaneous velocities and pressure (11) are
substituted into the Navier-Stokes equations which are
linearized with respect to the secondary amplitude, B.
The disturbance pressure is eliminated, resulting in the
vorticity equations.

h 1

R�

r2 �
@

@t

i

3�(v2 � r)
3 � (v3 � r)
2

+(
2 � r)v3 + (
3 � r)v2 = 0 (15)

with the continuity equation

r � v3 = 0 (16)

As with the primary problem, the equations are formed
in terms of the normal velocity (v3) and vorticity (
3).

The equations are found to take the form21,

� 1

R�

r2 �
@

@t
� (Uo � cx)

@

@x
+ cz

@

@z

�

3

�
dUo

dy

@v3

@z
+A

n
�(v1 � r)
3 � (v3 � r)
1

+(�1 +
@v1

@z
)
@v3

@x
+
1

@v3

@y
+ (�1 �

@v1

@x
)
@v3

@z

�
@v1

@z

@u3

@y
+

@v1

@x

@w3

@y

o
= 0 (17)

and,

� 1

R�

r2 �
@

@t
� (Uo � cx)

@

@x
+ cz

@

@z

�
r2v3 +

d2Uo

dy2
@v3

@x

+ A
n�
�(v1 � r)r

2 �
@

@y
r2v1 � (

@2u1

@x2
+

@2u1

@z2
�

@2u1

@y2

+ 2
@2v1

@x@y
)
@

@x
+ (

@2v1

@z2
�

@2v1

@x2
+

@2v1

@y2
+ 2

@2u1

@x@y
)
@

@y

+ (
@2w1

@y2
�

@2w1

@x2
+

@2u1

@x@z
�

@2v1

@y@z
)
@

@z
+ (

@v1

@y
+ 2

@u1

@x
)

(
@2

@z2
�

@2

@x2
+

@2

@y2
) � 2

@v1

@x

@2

@x@y
� 2(

@u1

@z
+

@w1

@x
)

@2

@x@z

�
@v1

@z

@2

@y@z

�
v3 +

�
�

@

@x
(r2v1) + 2(

@2v1

@z2
�

@2v1

@x2
+

@2v1

@y2

+ 2
@2u1

@x@y
)
@

@x
+ 2(

@2w1

@x@y
�

@2v1

@x@z
)
@

@z
�

@v1

@x
(
@2

@x2
+

@2

@z2

�
@2

@y2
) + 2(

@v1

@y
+ 2

@u1

@x
)

@2

@x@y
+ 2

@w1

@x

@2

@y@z

+
@v1

@z

@2

@x@z

�
u3 +

�
�

@

@z
(r2v1) + 2(

@2u1

@y@z
�

@2v1

@x@z
)
@

@x

�
@v1

@z
(
@2

@x2
�

@2

@y2
) + 2

@u1

@z

@2

@x@y

�
w3

o
= 0 (18)

The disturbance quantities v3, 
3 and @v3=@y are re-
quired to vanish far from the wall and at the wall for the
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rigid wall case. The compliantwall equations give the re-
maining boundary conditions in the compliant case. Ad-
ditionally, the primary amplitude, A, is a parameter in
the equations and is assumed to be locally non-varying.
As A ! 0 the Orr-Sommerfeld and Squire equations re-
sult. For the case of interest where A 6= 0, the primary
eigenfunctions (u1; v1; w1) appear in the equations as co-
e�cients.

To solve the secondary problem, a normal mode so-
lution having the following form is assumed,

v3(x; y; z; t) = e�t+i�(z cos��x sin�)V (x; y; z) (19)

where � = 2�=�z is a speci�ed spanwise wavenumber
and � = �r + i�i is a temporal eigenvalue or is spec-
i�ed for spatial analyses. V (x; y; z) is a function that
represents the class of secondary modes. Floqu�et theory
suggests the form of solution for periodic systems. For
the present problem, this may be written

V (x; y; z) = e
(x cos�+z sin �) ~V (x; y; z) (20)

where 
 = 
r + i
i is the characteristic exponent and
~V (x; y; z) is periodic in the (x; z) plane and may be rep-
resented by a Fourier series. Thus the representation of
the secondary instability for a 3-D basic 
ow is,

v3 =e
�t+i�(z cos��x sin�)+
(x cos�+z sin�)

1X
n=�1

v̂n(y)e
i(n=2)�r(x cos�+z sin�) (21)

This suggests a form of solution for the secondary distur-
bance based on a coordinate system oriented at an angle
� with respect to the mean 
ow and moving with the
primary wave. If the coordinate system is aligned with
the primary wave, or � = 0o, then the solution for the
secondary disturbance would follow Herbert, Bertolotti
and Santos23 who considered a 2-D primary wave.

If solutions given by eqn. (21) are substituted into
eqns. (17) and (18), an in�nite system of ordinary di�er-
ential equations result. The dynamic equations are de-
termined by collecting terms in the governing equations
with like exponentials. The system consists of two dis-
tinct classes of solution because the even and odd modes
decouple. Even modes correspond to the fundamental
mode of secondary instability, and the odd modes are
the subharmonic mode. Only a few terms of the Fourier
series are retained since, as shown by Herbert, Bertolotti
and Santos23, this provides a su�ciently accurate ap-
proximation for a 2-D disturbance.

This form of solution indicates two complex quanti-
ties, � and 
, which leads to an ambiguity similar to
that found with the Orr-Sommerfeld/Squire problem.
There are four unknowns, �r; �i; 
r ; 
i. Two can be de-
termined while two must be chosen in some other way.

In the present study, temporally-growing tuned modes
are examined. The temporal growth rate is �r, and �i
can be interpreted as a shift in frequency. In this case,

r = 
i = 0. If �i = 0, then the secondary disturbance
is travelling synchronously with the basic 
ow.

The boundary conditions for the secondary distur-
bance are given as

v̂n; v̂
0

n; 
̂n ! 0 as y !1 (22)

along with the compliant wall boundary conditions. In
the rigid wall case,

v̂n; v̂
0

n; 
̂n = 0 at y = 0 (23)

The analysis for the compliant boundary conditions for
secondary instabilities follows the same route as was
taken for the primary instabilities, except a number of
additional terms arise due to the presence of the primary
wave.

The 
uid/wall motion must be continuous in each
direction. In addition, the equations of force (6, 7) must
balance in the streamwise and spanwise directions in the
reference frame moving with the primary wave. Con-
sistent with the 
uid equations, the amplitude of the
primary wave is assumed to be locally non-varying. In
deriving the �nal form of the wall equations, a signi�-
cant di�erence between the primary and secondary form
arises from the pressure contribution. The pressure for
the secondary disturbance is determined from the mo-
mentum equations which are complicated by primary
coupling terms.

The continuity of motion between the 
uid and solid
is given by

@�3

@t
= u3 + �3U

0

o + A
n
(�1 � r)u3 + (�3 � r)u1

o
(24)

@�3

@t
= v3 + A

n
(�1 � r)v3 + (�3 � r)v1

o
(25)

@�3

@t
= w3 + A

n
(�1 � r)w3 + (�3 � r)w1

o
(26)

where

� � r = �
@

@x
+ �

@

@y
+ �

@

@z

Equations (24-26) involve six unknowns for the velocity

uctuation and surface displacement in a highly coupled
system. As with the primary boundary conditions, it
is possible to derive a set of equations which represent
the surface motion in terms of the normal velocity and
vorticity only. This is algebraically very tedious. A com-
plete derivation is given by Joslin21. Note that if A = 0
in the secondary wall equations, the primary wall equa-
tions result. This occurred with the 
uid equations as
well.
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4. Numerical Methods of Solution

The algebraic complexity of the dynamic equations
for the secondary disturbance and the compliant wall
equations requires that care be taken in applying any
numerical technique. Because no theoretical or exper-
imental data are available for the compliant problem,
both shooting16 and spectral21 approximations are used.
Also, noting that Bertolotti24 has shown for the rigid
wall problem with a 2-D primary instability that, after
the transformation from spatial to temporal, the solu-
tions are in good agreement, a temporal analysis is pre-
sented in this paper.

For the spectral method, Chebyshev series are intro-
duced to approximate each mode of the Fourier series.
An algebraic transformation is used to change from the
Chebyshev spectral domain [�1; 1] to the physical do-
main. Due to the properties of the Chebyshev polyno-
mial, the equations are recast in integral form. Cheby-
shev polynomials are used to represent the basic 
ow in
the series which are substituted into the integral equa-
tions. For the basic 
ow, 35 polynomials provided su�-
cient resolution of the eigenfunctions. The series repre-
senting the secondary instability requires 40 polynomi-
als for su�cient convergence to the dominant eigenvalue.
For the shooting method, beginning with the equations
for the compliant wall, integrations of the disturbance
equations across the boundary layer are performed us-
ing a Runge-Kutta scheme. At the edge of the bound-
ary layer, the numerical solution vectors are matched
with the asymptotic solutions. A very accurate initial
guess is found to be required for convergence using this
method. To demonstrate the accuracy of the numerical
techniques, a comparison for the rigid wall case is made
with Herbert25 for R� = 826:36, Fr = 83, � = 0:18,
and A = 0:02. Herbert obtained the dominant mode
� = 0:01184. In good agreement, the present spec-
tral and shooting methods lead to � = 0:011825 and
� = 0:011839, respectively.

5. Results

For all of the results that follow, the freestream ve-
locity is 20 m/s, the density is 1000 kg/m3, and the kine-
matic viscosity is 1�10�6 m2/s. The coatings considered
consist of both isotropic and non-isotropic walls. Both
walls were optimized at R�� = 2240 for 2-D primary
instabilities. The isotropic wall has properties � = 0o,
b = 0:735mm, Ex = 1:385MN/m2, K = 0:354GN/m3

and �m = 1000 kg/m3; and the non-isotropic wall has
properties � = 60o, b = 0:111mm, Ex = 0:509MN/m2,
K = 0:059GN/m3 and �m = 1000 kg/m3. A Reynolds
number of 2240 was chosen because, for a boundary layer
over a rigid wall, the disturbance with the critical fre-
quency (in the en sense) reaches its maximum growth
rate near this value of Reynolds number. Accordingly,

this is a good choice of Reynolds number for optimizing
the wall properties. In considering 3-D instabilities, the
walls optimized for 2-D instabilities are used with the ad-
dition of isotropic plates. The properties of an isotropic
plate are direction independent; that is, Ex = Ez. Al-
though complete details of the optimization process and
philosophy are given by Carpenter and Morris22, a recap
follows.

With a 
exible wall present, other modes of instabil-
ity arise. With changes in the compliant wall properties,
stable, or marginally stable, 
uid and wall modes can be-
come unstable and dominant. The present wall proper-
ties were varied to achieve an optimal speci�ed condition.
This desired condition was to achieve a minimumgrowth
rate for a dominant 2-D Tollmien-Schlichting instability
while keeping other modes marginally stable. For the
secondary analysis, these \optimal" compliant walls led
to no additional unstable modes. However, this is not to
say that additional growing modes may not appear for
different wall properties.

In this analysis, the primary wave amplitude (A)
and the secondary instability spanwise wavenumber (�)
are parameters of the problem. Herbert26 showed in his
boundary-layer studies for the 2-D primary wave over a
rigid wall that as the amplitude increases the growth rate
of the secondary instability increases. Also, as the span-
wise wavenumber is varied, the temporal growth rate
reaches a maximum for a particular wavenumber. Ad-
ditionally, Herbert showed that the subharmonic mode
reaches greater growth rates than the fundamental mode
for low amplitude disturbances. These �ndings were
veri�ed by the direct numerical simulations of Spalart
and Yang27. Althought both the subharmonic and fun-
damental modes over the compliant walls were exam-
ined, emphasis is placed on the subharmonic mode, since
as both theory and computations indicate, subharmonic
disturbances are more unstable than fundamental distur-
bances for small amplitudes. Limited fundamental dis-
turbance results are included to verify that these modes
do not become the dominant instability over compliant
walls.

Primary waves with frequencies that give maxi-
mum disturbance growth rates are considered. For the
isotropic wall, the maximum growth rate occurs at a fre-
quency ! = 0:065 (Fr =' 29:0), where Fr = !=R�106.
Figure 2 shows the growth rates of the subharmonic and
fundamental disturbances as a function of the spanwise
wavenumber for the rigid wall and isotropic compliant
wall. As the �gure shows, growth rates over the com-
pliant wall are reduced in comparison with the rigid
wall results over the whole range of spanwise wavenum-
bers. Additionally, the subharmonic disturbance has
much larger growth rates than the fundamental distur-
bance, as expected. Similar trends are found in the com-
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parison of non-isotropic and rigid wall results. In consid-
ering reductions in the growth rates of the subharmonic
mode as a result of compliant walls, the isotropic wall
suppressed the maximum growth rate by 20%. For the
maximumgrowth rate over the non-isotropic wall, which
occurs at a di�erence frequency than the isotropic wall
case, the non-isotropic wall led to a reduction of 17%
compared to rigid wall results. So for a �xed Reynolds
number and primary wave amplitude, both isotropic and
non-isotropic compliant walls lead to reduced secondary
instability growth rates compared to the rigid wall re-
sults.

Fig. 2 Growth rates of the secondary instabil-

ities as a function of spanwise wavenumber for

R�� = 2240, Fr ' 29:0, and A = 0:01. subharmonic:

�o�, rigid wall; � � �o� � �, isotropic wall and funda-

mental: � ��, rigid wall; � � � � � � �, isotropic wall.

A more revealing measure of the e�ectiveness of us-
ing compliant walls to suppress secondary instabilities is
to compute the amplitude growth and decay with down-
stream distance. The ampli�cation of the primary and
secondary instabilities are governed by

ln
A

Ao

=

Z x

xo

���i dx and ln
B

Bo

=

Z x

xo

��r
c�r

dx (27)

where Ao; Bo are the initial amplitudes at xo, A and B

are the amplitudes at a downstream distance x, and �
denotes dimensional quantities. As shown by Herbert18,
the theoretical prediction of primary and secondary am-
pli�cation by eqns. (27) compares well with the exper-
iments of Kachanov and Levchenko20. A similar com-
parison is shown in Fig. 3, where the theoretical results
were obtained with the present numerical techniques.

Before computing similar ampli�cation results over
the compliant walls, inferences of the secondary insta-
bility growth may be drawn from primary instability
results. Figure 4 shows the maximum ampli�cation of
various frequency primary waves propagating over the
rigid and compliant walls along with the ampli�cation

of waves at a frequency Fr = 53. At this frequency,
primary amplitudes over the the isotropic wall are sim-
ilar to those over the rigid wall. This suggests that the
development of secondary instabilities might also be sim-
ilar, since secondary disturbances are parametrically de-
pendent on the basic 
ow. For the non-isotropic wall
results shown in Figure 4, the primary amplitudes are
suppressed signi�cantly compared to the rigid wall and
isotropic wall cases. Therefore, the non-isotropic wall
would likely lead to a very di�erent secondary instability
development, most probably with reduced amplitudes.
Again from Figure 4, one might expect greater di�er-
ences in the secondary instability development over both
compliant walls as the Reynolds numbers increase and
corresponding frequencies decrease.

Fig. 3 Amplitude growth as a function of

Reynolds number for the subharmonic mode (B)

of a 2-D primary wave (A) over a rigid wall at

Fr = 124, Ao = 0:0044, Bo = 1:86�10�5, and b = 0:33.
|{, theory and (�,o), Kachanov and Levchenko

[15].

Fig. 4 2-D curves of maximum amplification for

TSI waves over a |{, rigid wall; ���, isotropic
wall; and ���, non-isotropic wall and ���, waves
of Fr ' 53.
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To demonstrate these postulations for secondary in-
stabilities, eqns. (27) are used to compute the ampli�-
cation of primary and secondary instabilities over the
rigid, isotropic, and non-isotropic walls for Ao = 0:004,
Bo = 1� 10�5, and b = 0:15, where b = �=R� 103. The
initial amplitudes are somewhat arbitrary: the present
values were selected to be close to the experiments of
Kachanov and Levchenko20 for rigid walls. The spanwise
wavenumber (b) was chosen near the maximum growth
rate of the secondary instability at the branches of the
neutral curve for the rigid wall case. Both primary and
secondary ampli�cations are shown in Fig. 5. Clearly,
the results of the secondary instability growth over the
isotropic and rigid walls are similar, as postulated, while
the non-isotropic wall signi�cantly suppresses the sec-
ondary instability growth.

Fig. 5 Amplitude growth as a function of

Reynolds number for the subharmonic mode (B)

of a 2-D primary wave (A) at Fr ' 53, Ao = 0:004,
Bo = 1� 10�5, and b = 0:15 over a |{, rigid wall;

���, isotropic wall; and ���, non-isotropic wall.

The growth of the secondary instability is dependent
on the parameters of the basic 
ow, most probably the
primary instability amplitude (A). For example, Fig. 6
shows the ampli�cation of the primary and secondary
instabilities over the rigid wall with properties as before
and over the non-isotropic wall with both Ao = 0:004
and Ao = 0:008. Even by doubling the initial amplitude
of the primary disturbance, the growth of the secondary
instability over the non-isotropic wall continues to be
suppressed and has not exceeded the primary amplitude
upon crossing the neutral curve. Yet, the doubled initial
amplitude (Ao = 0:008) results in a signi�cant increase
in the secondary instability growth compared with the
lower amplitude (Ao = 0:004) results. Hence, the sup-
pression of the primary instability amplitude is of utmost
importance to suppress the onset of the secondary insta-
bility growth.

Fig. 6 Amplitude growth as a function of

Reynolds number for the subharmonic mode (B)

of a 2-D primary wave (A) at Fr ' 53, Bo =
1 � 10�5, and b = 0:15 over a |{, rigid wall

with Ao = 0:004; � � �, non-isotropic wall with

Ao = 0:004; and |{ |{, non-isotropic wall with

Ao = 0:008.

Fig. 7 Growth rates of the subharmonic distur-

bance for 2-D and 3-D primary waves over the

isotropic wall as a function of spanwise wavenum-

ber for R�� = 2240, Fr ' 22:3, and A = 0:01. |{,

� = 0o; � � � ; � = 10o; and |{ |{, � = 20o.

Proceeding with investigating the e�ect of compli-
ant walls on secondary instabilities, 3-D primary waves
are introduced and are determined by the speci�ed wave
angle (�). In Fig. 7, subharmonic disturbance growth
rates over the isotropic compliant wall are shown with
variation in spanwise wavenumber and primary wave an-
gle (�). A frequency ! = 0:05 (Fr ' 22:3) is selected
since the 3-D primary wave growth rate is maximized
at this frequency for the Reynolds number R�� = 2240.
Subharmonic growth rates arising from the 2-D primary
wave (� = 0o) are clearly larger than those from the
3-D waves. As the primary wave angle (�) increases,
the subharmonic growth rates continually become more
damped. Additionally, for oblique waves (� 6= 0o) the
secondary disturbances no longer travel synchronously
with the primary wave. This is shown in Fig. 8 by the fre-
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quency shifts that result over the isotropic wall. Similar
results occur for the non-isotropic wall. It is likely that
this shift leads to a reduced e�ciency of energy transfer
from the basic 
ow to the secondary disturbance. This
frequency shift is as much a result of the 3-D nature of
the basic 
ow as it is of the compliant wall in
uence. Re-
sults similar to those of Fig. 8 were found by Balachan-
dar, Streett and Malik28 for the rotating-disk problem
which also has a 3-D basic 
ow.

Fig. 8 Frequency shift of the subharmonic distur-

bance for 3-D primary waves over the isotropic

wall as a function of spanwise wavenumber for

R�� = 2240, Fr ' 22:3, and A = 0:01. � � � ; � = 10o

and |{ |{, � = 20o.

The secondary growth rate comparison in Fig. 7 is
misleading as a result of holding the primary amplitude
(A) �xed. With a variation in wave angle (�), corre-
sponding primary wave amplitudes result as shown by
Joslin, Morris and Carpenter16. Then a more realistic
comparison of secondary growth rates arising from 2-D
and 3-D primary waves should involve amplitudes suited
to a given wave angle (�). One means to derive these
amplitudes is through the use of eqns. (27). In Fig. 9,
a comparison of the subharmonic growth rates over the
isotropic compliantwall is made for 2-D and 3-D primary
waves allowing for amplitude di�erences. Similar results
are found for the non-isotropic wall as well. As shown,
the 3-D primary wave does lead to much larger growth
rates than a 2-D wave for the compliantwalls considered.
This clearly demonstrates that in spite of the loss of syn-
chronization with the basic 
ow, 3-D primary waves lead
to dominant secondary instabilities over compliant walls.
Again, the amplitude of the primary wave is of utmost
importance for determining the secondary disturbance
growth. Yet, compliant walls do lead to a reduction in
secondary growth rates compared with those for the rigid
wall. Also, recall that the amplitudes for 3-D primary
waves used in these calculations were determined by a
normal mode assumption which leads to a conservative

estimation of the primary amplitude16, and a more re-
alistic lower amplitude would lead to secondary growth
rates somewhere between the 2-D and 3-D results shown
in Fig. 9. But, the goal here is to determine the fun-
damental e�ect of compliant walls on secondary distur-
bances.

Final amplitude calculations using eqns. (27) are
carried out for the frequency Fr ' 53. In Fig. 10, sec-
ondary amplitudes arising from the most ampli�ed 3-
D primary wave over a non-isotropic compliant wall are
compared to the previous results from2-D primarywaves
over rigid and non-isotropic walls. At this frequency, the
amplitude di�erence between the 2-D and 3-D primary
instabilites is small, yet the secondary disturbance re-
sponds notably. This is an indication that small changes
in the primary instability, however slight, have a mount-
ing e�ect on the rapidly developing secondary instability.

Fig. 9 Growth rates of the subharmonic distur-

bance for 2-D and 3-D primary waves over the

isotropic wall as a function of spanwise wavenum-

ber for R�� = 1760 and Fr ' 30:2 for |{, � = 0o

with A = 0:010; � � � ; � = 45o with A = 0:031.

Fig. 10 Amplitude growth as a function of

Reynolds number for the subharmonic mode (B)

of a 2-D and 3-D primary wave (A) at Fr ' 53,
Bo = 1� 10�5, Ao = 0:004, and b = 0:15 over a |{,

rigid wall � � �, 2-D non-isotropic wall; and � � �,
3-D non-isotropic wall.
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6. Summary

In earlier studies15;16;21, it was shown that 3-D pri-
mary instabilities theoretically dominate transition over
the compliant walls considered, yet transition delays
were found compared to the rigid wall. The present pa-
per has further extended the understanding of the e�ect
of compliant walls on transition mechanisms in bound-
ary layers. Namely, the e�ect compliant walls have on
secondary instabilities has been investigated. It has been
shown that the use of compliantwalls can lead to reduced
growth rates and ampli�cation of secondary instabili-
ties. From both the earlier 3-D primary results combined
with the present secondary �ndings, it should be empha-
sized that the physical nature and make-up of the mech-
anisms in transition are not altered by the control device
(i.e. compliant wall). Rather, only the response of that
mechanism is changed. This fact is of particular impor-
tance for designing Laminar Flow Control (LFC) studies.
As an example, the behavior of a secondary instability
growth with variation in primary amplitude is well doc-
umented by Herbert. As the primary amplitudes are
reduced, the excitement of the secondary instability is
delayed. Thus, active or passive devices which suppress
primary instability growth should lead to corresponding
suppression and delay of succeeding instabilities. This
has been demonstrated above with the compliant wall.
The twofold major discovery and demonstration of the
present investigation is: (1) the use of passive devices,
such as compliant walls, lead to signi�cant reductions in
the secondary instability growth rates and ampli�cation;
(2) suppressing the primary growth rates and subsequent
ampli�cation enable delays in the growth of the explosive
secondary instability mechanism.
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